Statistical Inference

Two simple examples

- Lady tasting tea
- Human energy fields

 These examples provide the intuition behind statistical inference

v.

Fisher's exact test

- A simple approach to inference
- Only applicable when outcome probabilities known
- Lady tasting tea example
 - □ Claims she can tell whether the milk was poured first
 - ☐ In a test, 4/8 teacups had milk poured first
 - □ The lady correctly detects all four
 - □ Should we believe that she has milk-first detection ability?
- To answer this question, we ask, "What is the probability she did this by chance?"
 - If likely to happen by chance, then we shouldn't be convinced
 - □ If very unlikely, then we should maybe believe her
 - □ This is the basic question behind statistical inference
 - Null hypothesis
 - People seem poorly equipped to make these inferences, in part because they forget about failures, but notice success: e.g. Dog ESP, miracles
 - Other examples: fingerprints, DNA, HIV tests, regression coefficients, mean differences, etc.
 - Answer?
 - 70 ways of choosing four cups out of eight
 - How many ways can she do so correctly?

By chance, she would only guess all four correctly with probability (1/70 =) 0.014. So, we can be quite confident in her milk-first detection ability.

Second simple example Healing touch: human energy field detection

"A Close Look at Therapeutic Touch"

Linda Rosa; Emily Rosa; Larry Sarner; Stephen Barrett. 1998.

JAMA

(279:1005-1010)

Figure 1.—Experimenter hovers hand over one of subject's hands. Draped towel prevents peeking. Drawing by Pat Linse, Skeptics Society.

Human energy field: Prob. of success by chance

Human energy field detection: Confidence in ability

Figure 2.—Distribution of test results.

Table 2.—Statistical Analysis

	-	
Statistical Function	Initial Test (n = 15)	Follow-up Test (n = 13)
Mean (95% confidence interval)	4.67 (3.67-5.67)	4.08 (3.17-4.99)
SD	1.74	1.44
α (1-tailed test)	.05	.05
t statistic	-0.7174	-2.222
Upper critical limit of Student <i>t</i> distribution	1.761	1.782
Alternative hypothesis, µ = 6.67	0.9559	0.9801
Alternative hypothesis, μ = 7.50	0.999644	0.999953

Null hypothesis

- In both cases, we calculated the probability of making the correct choice by chance and compared it to the observed results.
- Thus, our <u>null hypothesis</u> was that the lady and the therapists lacked any of their claimed ability.
- What's the null hypothesis that Stata uses by default for calculating p values?
- Always consider whether null hypotheses other than 0 might be more substantively meaningful.
 - ☐ E.g., testing whether the benefits from government programs outweigh the costs.

Assessing uncertainty

- With more complicated statistical processes, larger samples, continuous variables, Fisher's exact test becomes difficult or impossible
- Instead, we use other approaches, such as calculating standard errors and using them to calculate confidence intervals
- The intuition from these simple examples, however, extends to the more complicated one

Standard error: Baseball example

- In 2006, Manny Ramírez hit .321
- How certain are we that, in 2006, he was a .321 hitter? Confidence interval?
- To answer this question, we need to know how precisely we have estimated his batting average
- The standard error gives us this information, which in general is (where s is the sample standard deviation)
- Equation?

std. err. =
$$\frac{s}{\sqrt{n}}$$

Baseball example

The standard error (s.e.) for proportions (percentages/100) is?

$$\sqrt{\frac{p(1-p)}{n}}$$

- For n = 400, p = .321, s.e. = .023
- Which means, on average, the .321 estimate will be off by .023

M

Baseball example: postseason

- 20 at-bats
 - \square N = 20, p = .400, s.e. = .109
 - Which means, on average, the .400 estimate will be off by .109

- 10 at-bats
 - \square N = 10, p = .400, s.e. = .159
 - Which means, on average, the .400 estimate will be off by .159

Using Standard Errors, we can construct "confidence intervals"

Confidence interval (ci): an interval between two numbers, where there is a certain specified level of confidence that a population parameter lies

ci = sample parameter <u>+</u> multiple * sample standard error

Confidence interval

- Much of the time, we fail to appreciate the uncertainty in averages and other statistical estimates
 - □ Postseason statistics
 - Boardgames
 - Life

Two types of inference

- Testing underlying traits
 - □ E.g., can lady detect milk-poured first?
 - □ E.g., does democracy improve human lives?
- Testing inferences about a population from a sample
 - What percentage of the population approves of President Bush?
 - What's average household income in the United States?

Testing inferences about a population from a sample

Family income in 2006

Certainty about mean of a population based on a sample: Family income in 2006

Source: 2006 CCES

Calculating the Standard Error on the mean family income of \$65.8 thousand dollars

Equation?

std. err. =
$$\frac{S}{\sqrt{n}}$$

For the income example,

std. err. = 41.6/177.2 = \$0.23 thousands of dollars

$$\overline{X}$$
= 65.8, n = 31401, s = 41.7

The Picture

Where does the bell-shaped curve come from?

That is, how do we know that two <u>+</u> standard errors covers 95% of the distribution?

Could this possibly be right? Why?

□ Central limit theorem

Central Limit Theorem

As the sample size n increases, the distribution of the mean \overline{X} of a random sample taken from **practically any population** approaches a *normal* distribution, with mean μ and standard deviation $\sqrt[\sigma]{n}$

м

Illustration of Central Limit Theorem: Exponential Distribution

Consider 10,000 samples of n = 100

$$N = 10,000$$

Mean = 249,993
 $s = 28,559$

What will the distribution of these means look like?

Consider 1,000 samples of various sizes

Convince yourself by playing with simulations

- http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html
- http://www.kuleuven.ac.be/ucs/java/index.htm

Most important standard errors

In small samples (n <30), these statistics are not normally distributed. Instead, they follow the t-distribution.

We'll discuss that complication next class.

Mean	$\frac{S}{\sqrt{n}}$
Proportion	$\sqrt{\frac{p(1-p)}{n}}$
Diff. of 2 means	$\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$
Diff. of 2 proportions	$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$
Diff of 2 means (paired data)	$\frac{S_d}{\sqrt{n}}$
Regression (slope) coeff.	$\frac{s.e.r.}{\sqrt{n-1}} \times \frac{1}{s_x}$

Another example

- Let's say we draw a sample of tuitions from 15 private universities. Can we estimate what the average of all private university tuitions is?
- N = 15
- Average = \$29,735

• s = 2,196
• s.e. =
$$\frac{s}{\sqrt{n}} = \frac{2,196}{\sqrt{15}} = 567$$

N = 15; avg. = 29,735; s = 2,196; s.e. =
$$s/\sqrt{n}$$
 = 567

The Picture

м

Confidence Intervals for Tuition Example

- 68% confidence interval
 - \square = \$29,735 + 567
 - \square = [\$29,168 to \$30,302]
- 95% confidence interval
 - \square = \$29,735 + 2*567
 - $\square = [\$28,601 \text{ to } \$30,869]$
- 99% confidence interval
 - \square = \$29,735 <u>+</u> 3*567
 - \square = [\$28,034 to \$31,436]

Using z-scores

The z-score or the "standardized score"

Equation?
$$Z = \frac{x - x}{\sigma_x}$$

Using z-scores to assess how far values are from the mean

What if someone (ahead of time) had said, "I think the average tuition of major research universities is \$25k"?

- Note that \$25,000 is well out of the 99% confidence interval, [28,034 to 31,436]
- Q: How far away is the \$25k estimate from the sample mean?
 - □ A: Do it in *z*-scores: (29,735-25,000)/567
 - **=** 8.35

Proportions

<u>Difference in means</u>

Difference in proportions

Constructing confidence intervals of <u>proportions</u>

- Let us say we drew a sample of 1,000 adults and asked them if they approved of the way George Bush was handling his job as president. (March 13-16, 2006 Gallup Poll) Can we estimate the % of all American adults who approve?
- N = 1000

p = .37
s.e.
$$= \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{.37(1-.37)}{1000}} = 0.02$$

N = 1,000; p. = .37; s.e. =
$$\sqrt{p(1-p)/n}$$
 = .02

The Picture

r,e

Confidence Intervals for Bush approval example

- 68% confidence interval = .37±.02 = [.35 to .39]
- 95% confidence interval = .37<u>+</u>2*.02 = [.33 to .41]
- 99% confidence interval = .37±3*.02 =[.31 to .43]

What if someone (ahead of time) had said, "I think Americans are equally divided in how they think about Bush."

- Note that 50% is well out of the 99% confidence interval, [31% to 43%]
- Q: How far away is the 50% estimate from the sample proportion?
 - \square A: Do it in *z*-scores: (.37-.5)/.02 = -6.5

Construction

Constructing confidence intervals of <u>differences of means</u>

- Let's say we draw a sample of tuitions from 15 private and public universities. Can we estimate what the difference in average tuitions is between the two types of universities?
- N = 15 in both cases
- Average = 29,735 (private); 5,498 (public); diff = 24,238
- s = 2,196 (private); 1,894 (public)

s.e. =
$$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{\frac{4,822,416}{15} + \frac{3,587,236}{15}} = 749$$

The Picture

re.

Confidence Intervals for difference of tuition means example

- 68% confidence interval = 24,238<u>+</u>749 = [23,489 to 24,987]
- 95% confidence interval = 24,238+2*749 = [22,740 to 25,736]
- 99% confidence interval =24,238<u>+</u>3*749 =
- **[21,991 to 26,485]**

What if someone (ahead of time) had said, "Private universities are no more expensive than public universities"

- Note that \$0 is well out of the 99% confidence interval, [\$21,991 to \$26,485]
- Q: How far away is the \$0 estimate from the sample proportion?
 - \square A: Do it in z-scores: (24,238-0)/749 = 32.4

100

Constructing confidence intervals of difference of proportions

- Let us say we drew a sample of 1,000 adults and asked them if they approved of the way George Bush was handling his job as president. (March 13-16, 2006 Gallup Poll). We focus on the 600 who are either independents or Democrats. Can we estimate whether independents and Democrats view Bush differently?
- N = 300 ind; 300 Dem.
- p = .29 (ind.); .10 (Dem.); diff = .19

• s.e. =
$$\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}} = \sqrt{\frac{.29(1-.29)}{300} + \frac{.10(1-.10)}{300}} = .03$$

diff. p. = .19; s.e. = .03

The Picture

r,e

Confidence Intervals for Bush Ind/Dem approval example

- 68% confidence interval = .19<u>+</u>.03 =
- [.16 to .22]
- 95% confidence interval = .19<u>+</u>2*.03 =
- [.13 to .25]
- 99% confidence interval = .19<u>+</u>3*.03 =
- [.10 to .28]

What if someone (ahead of time) had said, "I think Democrats and Independents are equally unsupportive of Bush"?

- Note that 0% is well out of the 99% confidence interval, [10% to 28%]
- Q: How far away is the 0% estimate from the sample proportion?
 - \square A: Do it in *z*-scores: (.19-0)/.03 = 6.33

Constructing confidence intervals for regression coefficients

 Let's look at the relationship between the mid-term seat loss by the President's party at midterm and the President's Gallup poll rating

N = 14
s.e.r. = 13.8

$$s_x = 8.14$$

s.e._{slope} =
$$\frac{s.e.r.}{\sqrt{n-1}} \times \frac{1}{s_x} = \frac{13.8}{\sqrt{13}} \times \frac{1}{8.14} = 0.47$$

Slope = 1.97

w

The Stata output

. reg loss gallup if year>1948

Source	SS	df	MS		Number of obs	= 14 = 17.53
Model Residual	3332.58872 2280.83985	1 3332 12 190.	.58872 069988		Prob > F R-squared	= 0.0013 = 0.5937
·		13 431.			Adj R-squared Root MSE	= 13.787
loss	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
gallup		.4700211 25.54753	4.19 -4.99	0.001	.9440315	2.992208 -71.76486

N = 14; slope=1.97; s.e. = 0.47

The Picture

Ŋ4

Confidence Intervals for regression example

- 68% confidence interval = 1.97<u>+</u> 0.47= [1.50 to 2.44]
- 95% confidence interval = 1.97+ 2*0.47 = [1.03 to 2.91]
- 99% confidence interval = 1.97+3*0.47 = [0.62 to 3.32]

What if someone (ahead of time) had said, "There is no relationship between the president's popularity and how his party's House members do at midterm"?

- Note that 0 is well out of the 99% confidence interval, [0.62 to 3.32]
- Q: How far away is the 0 estimate from the sample proportion?
 - \square A: Do it in z-scores: (1.97-0)/0.47 = 4.19

z vs. t

If *n* is sufficiently large, we know the distribution of sample means/coeffs. will obey the normal curve

When the sample size is large (i.e., > 150), convert the difference into z units and consult a z table

$$Z = (H_1 - H_0) / s.e.$$

Reading a z table

Regression example

$$Z = (H_1 - H_{null}) / s.e.$$

Large sample (n = 1000)

Slope (b) =
$$2.1$$

s.e. = 0.9

Calculate p-value for one-tailed test $H_{null} = 0$

$$Z = (2.1 - 0)/0.9$$

$$Z = 2.3$$

p-value (using handout)

$$Pr(Z > 2.3) < 0.5 - .4893$$

<u>Interpretation</u>: probability that we would observe a coefficient of 2.1 by chance is less than 0.011.

For two-tailed test: Pr(|Z| > 2.3) < 1 - 2*.4893 (calculations differ by table)

Standard Normal Probabilities (for z < 0)

	z									
I	.60	.01	.62	.03	.04	.65	.06	.01	.09	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
33	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
32	.0007	.0007	.0006	.0005	.0005	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0025	.0025	.0024	.0023	.0023	0022	.0021	.0021	.0020	.0019
2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0025
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0035
-2.5	.0062	.0000	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
2.4	.0082	.0800.	.0078	.0075	.0073	.0071	.0009	.0068	.0065	.0064
-2.3	.0107	.0104	.0102	.0099	.0095	.0094	.0091	.0089	.0087	.0084
22	.0139	.0135	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0145	.0143
-2.0	.0228	.0222	.0217	.0212	.0297	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0445	.0435	.0427	.0418	.0439	.9401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0008	.0655	.0643	.0530	.0518	.0605	.0594	.0582	.0571	.0559
-1.4	.0308	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
13	.0008	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1582	.1539	.1515	.1482	.1459	.1445	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1550	.1635	.1011
-0.8	.2119	2090	2001	.2033	.2005	.1977	.1949	.1922	.1894	.1867
0.7	2420	2389	.2358	.2327	.2296	2255	.2236	.2206	.2177	.2148
0.5	.2743	.2709	2576	.2543	.2011	2578	.2546	.2514	.2483	.2451
- 0.5	.3085	.3050	3015	.2981	.2945	2912	.2877	.2843	.2810	.2776
- 0.4	.3445	.3409	.3372	.3336	.3300	3254	.3028	.3192	.3155	.3121
-0.3	.3821	.3783	3745	.3707	.3669	3632	.3594	.3557	.3520	.3483
-0.2	A297	.4158	A129	.4090	A052	.4013	.3974	.3936	.3897	.3859
-0.1	4602	A582	.4522	.4483	A443	.4404	.4364	A325	.4285	.4247
-0.0	.5000	.4950	.4920	.4880	.4840	.4801	.4761	A721	.4681	.4841

in the Extreme(forz<0)

	-3.09	-3.72	-4.26	-4.75	-5.20	-5.61	-6.00	
Probability	.001	,0001	.0001	,000001	.0000001	.00000001	.00000001	

8PLUS was used to determine information for the "in the Extreme" portion of the table.

t (when the sample is small)

When the sample size is small (i.e., <150), convert the difference into t units</p>

$$t = (H_1 - H_{null}) / s.e.$$

and consult a t table

Mid-term seat loss example

What's
$$H_1$$
? $t = (H_1 - H_{null}) / s.e.$
Slope = 1.97
s.e._{slope} = 0.47 What's H_{null} ? $t = (1.97 - 0) / 0.47$
 $t = 4.19$

			-	onfidence Lev			
4	.89	.90	.95	.55	.99	.998	.599
1	3.08	6.31	12.71	31.82	63.66	318.31	636.62
2	139	2.92	4.30	6.96	9.92	22.33	31.00
3	1.64	235	3.18	4.54	5.84	10/21	12.92
4	1.53	2.13	2.78	3.75	4.60	7.17	8.51
5	1.48	2.02	2.57	3.36	4.03	5.89	6.87
6	1.44	1.94	2.45	3.14	3.71	521	5.96
7	1.41	1.99	2.35	3.00	3.50	4.79	5.41
8	1.40	1.85	231	2.90	3.36	4.50	5.04
9	1.38	1.83	2.25	2.82	3.25	4.30	4.78
10	1.37	1.81	2.23	2.76	3.17	4.14	4.50
11	1.35	1.80	2.20	2.72	3.11	4.02	4,44
12	1.35	1.78	2.18	2.58	3.05	3.93	4.32
13	1.35	1.77	2.15	2.65	3.01	3.85	4.22
14	1.35	1.75	2.14	2.62	2.98	3.79	4.14
15	134	1.75	2.13	2.60	2.95	3.73	4.07
16	134	1.75	2.12	2.58	2.92	3.69	4.01
17	1.33	1.74	2.11	2.57	2.90	3.65	3.97
18	1.33	1.73	2.10	2.55	2.88	351	3.92
19	1.33	1.73	2.09	254	2.85	3.58	3.88
20	1.33	1.72	2.09	253	2.85	3.55	3.85
21	1.32	1.72	2.08	2.52	283	3.53	3.82
22	1.32	1.72	2.07	2.51	2.82	3.50	3.79
23	1.32	171	2.07	250	2.81	3.48	3.77
24	1.32	171	2.05	2.49	2.80	3.47	3.75
	1.32	121	205	2.49	2/9	3.45	3.73
25				2.48	2.78	3.43	3.71
25	131	1.71	2.05		277	3.42	3.09
27	131	1.70	2.05	2.47			
28	131	1.70	2.05	2.47	276 215	3.41	3.67
29	131	1.70	2.05	2.45 2.45	275	3.40	3.65
30	131	1.70	2.04			3.39	3.65
40	1.30	1.58	2.02	2.42	2.70	331	3.55
50	1.30	1.68	201	2.40	2.58	326	3.50
60	1.30	1.57	2.00	239	2.55	323	3.45
70	129	1.67	1.99	2.38	2.65	321	3.44
80	1.29	1.55	1.99	2.37	2.54	3.20	3.42
90	1.29	1.55	1.99	2.37	2.63	3.18	3.40
100	1.29	1485	1.98	2.35	2.53	3.17	3.39
1000	1.282	1.646	1,962	2.330	2581	1098	3.300
ininte	1291	1.645	1.960	2.325	2.576	3.090	3:291
eo-failed a	.20	.10	.05	.02	.01	.002	.001
	.10	.05	.025			.001	.0005

Note that the t-distribution with infinite of its the standard normal distribution.

Testing hypotheses in Stata with ttest

What if someone (ahead of time) said, "Private university tuitions did not grow from 2003 to 2004"

- Mean growth = \$1,632
- Standard deviation on growth = 229
- Note that \$0 is well out of the 95% confidence interval, [\$1,141 to \$2,122]
- Q: How far away is the \$0 estimate from the sample proportion?
 - \square A: Do it in z-scores: (1,632-0)/229 = 7.13

The Stata output

```
. gen difftuition=tuition2004-tuition2003
```

. ttest diff = 0

```
One-sample t test
```

Variable Obs	Mean		Std. Dev.	=	=
difftu~n 15	1631.6	228.6886	885.707	1141.112	2122.088
mean = mean(difftui					= 7.1346
Ha: mean < 0	Pr (Ha: mean !=	_	_	ean > 0

You could test difference in means with

ttest tuition2004 = tuition2003

A word about standard errors and collinearity

■ The problem: if X₁ and X₂ are highly correlated, then it will be difficult to precisely estimate the effect of either one of these variables on Y

How does having another *collinear* independent variable affect standard errors?

s.e.
$$(\hat{\beta}_1) = \sqrt{\frac{1}{N-n-1} \frac{S_Y^2}{S_{X_1}^2} \frac{1-R_Y^2}{1-R_{X_1}^2}}$$

 R^2 of the "auxiliary regression" of X_1 on all the other independent variables

Example: Effect of party, ideology, and religiosity on feelings toward Bush

	Bush Feelings	Conserv.	Repub.	Religious
Bush Feelings	1.0	.39	.57	.16
Conserv.		1.0	.46	.18
Repub.			1.0	.06
Relig.				1.0

м

Regression table

	(1)	(2)	(3)	(4)
Intercept	32.7	32.9	32.6	29.3
	(0.85)	(1.08)	(1.20)	(1.31)
Repub.	6.73	5.86	6.64	5.88
	(0.244)	(0.27)	(0.241)	(0.27)
Conserv.		2.11		1.87
		(0.30)		(0.30)
Relig.			7.92	5.78
			(1.18)	(1.19)
N	1575	1575	1575	1575
R ²	.32	.35	.35	.36

Pathologies of statistical significance

Understanding and using "significance" Substantive versus statistical significance

- Which variable is more statistically significant?
- X₁
- Which variable is more important?
- X₂
- Importance (size) is often more relevant

	(4)	(0)
	(1)	(2)
Intercept	0.002	0.003
	(0.005)	(0.008)
X_1	0.500*	0.055**
	(0.244)	(0.001)
X_2	0.600	0.600
	(0.305)	(0.305)
N	1000	1000
\mathbb{R}^2	.32	.20
*p<.05, **p <.01		

Substantive versus statistical significance (again)

- Think about point estimates, such as means or regression coefficients, as the center of distributions
- Let B* be of value of a regression coefficient that is large enough for substantive significance
- Which is substantively significant?
- (a)

Substantive versus statistical significance (again)

- Which is more substantively significant? That is, which is larger?
 - □ Depends, but probably (d)
- Don't confuse lack of statistical significance with no effect
 - Lack of statistical significance usually implies uncertainty, not no effect

м

Degree of significance

- We often use 95% confidence intervals, which correspond with p<.05
- Is an effect statistically significant if it is p<.06? (that is, 95% CI encompasses zero)
 - □ Yes!
 - □ For many data sets, anything less than p<.20 is informative</p>
 - □ Treat significance as a continuous variable
 - E.g., if p<.20, we should be roughly 80% sure that the coefficient is different from zero. If p<.10, we should be roughly 90% sure that the coefficient is different from zero. Etc.

Don't make this mistake

×

Understanding and using "significance" **Summary**

- Focus on substantive significance (effect size), not statistical significance
- Focus on degree of uncertainty, not on the arbitrary cutoff of p =.05
 - Confidence intervals are preferable to p-values
 - Treat p-values as a continuous variables
- Don't confuse lack of statistical significance with no effect (that is, p >.05 does not mean b = 0)
 - □ Lack of statistical significance usually implies uncertainty, not no effect!

What to present

- Standard error
- t-value
- p-value
- Stars
- Combinations?
- Different disciplines have different norms, I prefer
 - □ Graphically presenting Cls
 - Coefficients with standard errors
 - □ No stars
 - □ (Showing data through scatter plots more important!)

TABLE 1. Explaining Democratic Lower House Seat Shares, 1946-90: Is the Nation Homogeneous?

	Main Effects		Southern Int	teractions	Border Interactions	
Variable	Coefficient	t-value	Coefficient	t-value	Coefficient	t-value
South	242.120	2.14	-		_	
Border	262.120	1.32			_	
Year	.032	.91	151	-2.28*	142	-1.31
Democrats (t - 1)	.508	20.10**	.435	7.70**	067	52
Compensation	.007	2.08*	005	-1.03	007	59
Presidential year	-27.079	-11.10**	22.778	6.19**	11.520	1.35
Presidential vote	.498	9.40**	452	5.85**	234	-1.39
Gubernatorial year	18.540	-7.86**	15.111	4.08**	440	04
Gubernatorial vote	.364	8.10**	328	-5.52**	044	20
Off year	-10.042	-10.62**	6.800	3.80**	2.818	.82
GNP growth	.149	2.74**	157	-1.49	148	79

Note: Thirty-one state intercepts not shown. Coefficients are unstandardized. n=1,035, adjusted $R^2=.89$, SEE=7.94 *p<.05; **p<.01

Statistical monkey business

(tricks to get p < .05)

- Bonferroni problem: using p <.05, one will get significant results about 5% (1/20) of the time by chance alone
- Reporting one of many dependent variables or dependent variable scales
 - ☐ Healing-with-prayer studies
 - □ Psychology lab studies
- Repeating an experiment until, by chance, the result is significant
 - Drug trials
 - □ Called file-drawer problem

Statistical monkey business

(tricks to get p < .05)

- Specification searches
 - □ Adding and removing control variables until, by chance, the result is significant
 - □ Exceedingly common

М

Statistical monkey business

Solutions

- With many dependent variables, test hypotheses on a simple unweighted average
- Bonferroni correction
 - ☐ If testing *n* independent hypotheses, adjusts the significance level by 1/*n* times what it would be if only one hypothesis were tested
 - □ E.g., testing 5 hypotheses at p < .05 level, adjust significance level to p/5 < .05/5 < .01
- Show bivariate results
- Show many specifications
- Model averaging
- Always be suspicious of statistical monkey business!